
MaX “Materials Design at the Exascale”, has received funding from the European Union’s Horizon
2020 framework, from Euro-HPC, and from individual countries funding agencies.

Overview of SIESTA Solvers
Alberto García (ICMAB-CSIC, Barcelona)

SIESTA: building, deployment and execution

Dr. José Maŕıa Escart́ın Esteban

6th October 2023

SIESTA: building, deployment and execution

Dr. José Maŕıa Escart́ın Esteban

6th October 2023
Some Reminders
12/11/2024 - Federico Pedron

SIESTA school, 17-21 November 2025

The basic core of SIESTA

2

The SIESTA method for ab initio order-N materials simulation 2755

Kinetic matrix elements T (R) ≡ ⟨ψ∗
1 | − 1

2∇2|ψ2⟩ can be obtained in exactly the same
way, except for an extra factor of k2 in equation (28):

Tl1m,l2m2,l(R) = 4π il1−l2−l

∫ ∞

0

1
2k4 dk jl(kR)i−l1ψ∗

1,l1m1
(k)il2ψ2,l2m2(k). (31)

Since we frequently use basis orbitals with a kink [7], we need rather fine radial grids to obtain
accurate kinetic matrix elements, and we typically use grid cutoffs of more than 2000 Ryd for
this purpose. Once obtained, the fine grid does not penalize the execution time, because the
interpolation effort is independent of the number of grid points. It also affects very marginally
the storage requirements, because of the one-dimensional character of the tables. However,
even though it needs to be performed only once, the calculation of the radial integrals (24), (28),
and (31) is not negligible if performed unwisely. We have developed a special fast radial Fourier
transform for this purpose, as explained in appendix B.

Dipole matrix elements, such as ⟨ψ1|x|ψ2⟩, can also be obtained easily by defining a new
function χ1(r) ≡ xψ1(r), expanding it using (21) and computing ⟨χ1|ψ2⟩ as explained above
(with the precaution of using lmax + 1 instead of lmax).

6. Grid integrals

The matrix elements of the last three terms of equation (16) involve potentials which are
calculated on a real-space grid. The fineness of this grid is controlled by a ‘grid cutoff’
Ecut : the maximum kinetic energy of the plane waves that can be represented in the grid
without aliasing12. The short-range screened pseudopotentials V NA

I (r) in (16) are tabulated
as a function of the distance to atoms I and easily interpolated at any desired grid point. The
last two terms require the calculation of the electron density on the grid. Let ψi (r) be the
Hamiltonian eigenstates, expanded in the atomic basis set

ψi (r) =
∑

µ

φµ(r)cµi, (32)

where cµi = ⟨φ̃µ|ψi⟩ and φ̃µ is the dual orbital of φµ: ⟨φ̃µ|φν⟩ = δµν . We use the compact
index notation µ ≡ {I lmn} for the basis orbitals, equation (8). The electron density is then

ρ(r) =
∑

i

ni |ψi (r)|2 (33)

where ni is the occupation of state ψi . If we substitute (32) into (33) and define a density
matrix

ρµν =
∑

i

cµiniciν, (34)

where ciν ≡ c∗
νi , the electron density can be rewritten as

ρ(r) =
∑

µν

ρµνφ
∗
ν (r)φµ(r). (35)

We use the notation φ∗
µ for generality, despite our use of real basis orbitals in practice. Then, to

calculate the density at a given grid point, we first find all the atomic basis orbitals, equation (8),
at that point, interpolating the radial part from numerical tables, and then we use (35) to calculate
the density. Notice that only a small number of basis orbitals are nonzero at a given grid point,
so that the calculation of the density can be performed in O(N) operations, once ρµν is known.

12 Notice that our grid cutoff to represent the density is not directly comparable to the energy cutoff in the context
of plane-wave codes, which usually refers to the wavefunctions. Strictly speaking, the density requires a value four
times larger.

The SIESTA method for ab initio order-N materials simulation 2755

Kinetic matrix elements T (R) ≡ ⟨ψ∗
1 | − 1

2∇2|ψ2⟩ can be obtained in exactly the same
way, except for an extra factor of k2 in equation (28):

Tl1m,l2m2,l(R) = 4π il1−l2−l

∫ ∞

0

1
2k4 dk jl(kR)i−l1ψ∗

1,l1m1
(k)il2ψ2,l2m2(k). (31)

Since we frequently use basis orbitals with a kink [7], we need rather fine radial grids to obtain
accurate kinetic matrix elements, and we typically use grid cutoffs of more than 2000 Ryd for
this purpose. Once obtained, the fine grid does not penalize the execution time, because the
interpolation effort is independent of the number of grid points. It also affects very marginally
the storage requirements, because of the one-dimensional character of the tables. However,
even though it needs to be performed only once, the calculation of the radial integrals (24), (28),
and (31) is not negligible if performed unwisely. We have developed a special fast radial Fourier
transform for this purpose, as explained in appendix B.

Dipole matrix elements, such as ⟨ψ1|x|ψ2⟩, can also be obtained easily by defining a new
function χ1(r) ≡ xψ1(r), expanding it using (21) and computing ⟨χ1|ψ2⟩ as explained above
(with the precaution of using lmax + 1 instead of lmax).

6. Grid integrals

The matrix elements of the last three terms of equation (16) involve potentials which are
calculated on a real-space grid. The fineness of this grid is controlled by a ‘grid cutoff’
Ecut : the maximum kinetic energy of the plane waves that can be represented in the grid
without aliasing12. The short-range screened pseudopotentials V NA

I (r) in (16) are tabulated
as a function of the distance to atoms I and easily interpolated at any desired grid point. The
last two terms require the calculation of the electron density on the grid. Let ψi (r) be the
Hamiltonian eigenstates, expanded in the atomic basis set

ψi (r) =
∑

µ

φµ(r)cµi, (32)

where cµi = ⟨φ̃µ|ψi⟩ and φ̃µ is the dual orbital of φµ: ⟨φ̃µ|φν⟩ = δµν . We use the compact
index notation µ ≡ {I lmn} for the basis orbitals, equation (8). The electron density is then

ρ(r) =
∑

i

ni |ψi (r)|2 (33)

where ni is the occupation of state ψi . If we substitute (32) into (33) and define a density
matrix

ρµν =
∑

i

cµiniciν, (34)

where ciν ≡ c∗
νi , the electron density can be rewritten as

ρ(r) =
∑

µν

ρµνφ
∗
ν (r)φµ(r). (35)

We use the notation φ∗
µ for generality, despite our use of real basis orbitals in practice. Then, to

calculate the density at a given grid point, we first find all the atomic basis orbitals, equation (8),
at that point, interpolating the radial part from numerical tables, and then we use (35) to calculate
the density. Notice that only a small number of basis orbitals are nonzero at a given grid point,
so that the calculation of the density can be performed in O(N) operations, once ρµν is known.

12 Notice that our grid cutoff to represent the density is not directly comparable to the energy cutoff in the context
of plane-wave codes, which usually refers to the wavefunctions. Strictly speaking, the density requires a value four
times larger.

The SIESTA method for ab initio order-N materials simulation 2757

-40

-20

0

20

40

∆
E

t (
m

eV
) Si

-6

-4

-2

0

2

∆
d

(m
A

ng
)

H2O

-15

-5

5

15

10 30 50 70 90

∆
P

 (
kb

ar
)

Ec (Ry)

-1

0

1

20 60 100 140 180

∆
α

(o)

Ec (Ry)

Figure 5. (a) Convergence of the total energy and pressure in bulk silicon as a function of the
energy cutoff Ecut of the real-space integration mesh. Circles and continuous line: using a grid-cell
sampling of eight refinement points per original grid point. The refinement points are used only in
the final calculation, not during the selfconsistency iteration (see text). Triangles: two refinement
points per original grid point. White circles: no grid-cell sampling. (b) Bond length and angle of
the water molecule as a function of Ecut .

where α, β are spin indices, with up or down values. The coefficients cα
µi are obtained by

solving the generalized eigenvalue problem
∑

νβ

(H αβ
µν − EiSµνδ

αβ)c
β
νi = 0 (39)

where H αβ
µν , like ραβ

µν , is a (2N × 2N) matrix, with N the number of basis functions:

H αβ
µν = ⟨φµ|T̂ + V̂ KB + V NA(r) + δV H(r) + V

αβ
XC(r)|φν⟩. (40)

This is in contrast to the collinear spin case, in which the Hamiltonian and density matrices can
be factorized into two N × N matrices, one for each spin direction. To calculate V

αβ
XC(r) we

first diagonalize the 2 × 2 matrix ραβ(r) at every point, in order to find the up and down spin
densities ρ↑(r), ρ↓(r) in the direction of the local spin vector. We then find V

↑
XC(r), V

↓
XC(r)

in that direction, with the usual local spin density functional [15], and we rotate V
αβ
XC(r) back

to the original direction. Thus, the grid operations are still basically the same, except that they
need now to be repeated three times, for the ↑↑, ↓↓ and ↑↓ components. Notice that ραβ(r)

and V
αβ
XC(r) are locally Hermitian, while H αβ

µν and ραβ
µν are globally Hermitian (H βα

νµ = H αβ∗
µν),

so their ↓↑ components can be obtained from the ↑↓ ones.

8. Brillouin zone sampling

Integration of all magnitudes over the Brillouin zone (BZ) is essential for small and moderately
large unit cells, especially of metals. Although SIESTA is designed for large unit cells, in
practice it is very useful, especially for comparisons and checks, to be able to also perform
calculations efficiently on smaller systems without using expensive superlattices. On the other

Sµν = ⟨φµ|φν⟩

Generalized eigenvalue problem

The SIESTA method for ab initio order-N materials simulation 2755

Kinetic matrix elements T (R) ≡ ⟨ψ∗
1 | − 1

2∇2|ψ2⟩ can be obtained in exactly the same
way, except for an extra factor of k2 in equation (28):

Tl1m,l2m2,l(R) = 4π il1−l2−l

∫ ∞

0

1
2k4 dk jl(kR)i−l1ψ∗

1,l1m1
(k)il2ψ2,l2m2(k). (31)

Since we frequently use basis orbitals with a kink [7], we need rather fine radial grids to obtain
accurate kinetic matrix elements, and we typically use grid cutoffs of more than 2000 Ryd for
this purpose. Once obtained, the fine grid does not penalize the execution time, because the
interpolation effort is independent of the number of grid points. It also affects very marginally
the storage requirements, because of the one-dimensional character of the tables. However,
even though it needs to be performed only once, the calculation of the radial integrals (24), (28),
and (31) is not negligible if performed unwisely. We have developed a special fast radial Fourier
transform for this purpose, as explained in appendix B.

Dipole matrix elements, such as ⟨ψ1|x|ψ2⟩, can also be obtained easily by defining a new
function χ1(r) ≡ xψ1(r), expanding it using (21) and computing ⟨χ1|ψ2⟩ as explained above
(with the precaution of using lmax + 1 instead of lmax).

6. Grid integrals

The matrix elements of the last three terms of equation (16) involve potentials which are
calculated on a real-space grid. The fineness of this grid is controlled by a ‘grid cutoff’
Ecut : the maximum kinetic energy of the plane waves that can be represented in the grid
without aliasing12. The short-range screened pseudopotentials V NA

I (r) in (16) are tabulated
as a function of the distance to atoms I and easily interpolated at any desired grid point. The
last two terms require the calculation of the electron density on the grid. Let ψi (r) be the
Hamiltonian eigenstates, expanded in the atomic basis set

ψi (r) =
∑

µ

φµ(r)cµi, (32)

where cµi = ⟨φ̃µ|ψi⟩ and φ̃µ is the dual orbital of φµ: ⟨φ̃µ|φν⟩ = δµν . We use the compact
index notation µ ≡ {I lmn} for the basis orbitals, equation (8). The electron density is then

ρ(r) =
∑

i

ni |ψi (r)|2 (33)

where ni is the occupation of state ψi . If we substitute (32) into (33) and define a density
matrix

ρµν =
∑

i

cµiniciν, (34)

where ciν ≡ c∗
νi , the electron density can be rewritten as

ρ(r) =
∑

µν

ρµνφ
∗
ν (r)φµ(r). (35)

We use the notation φ∗
µ for generality, despite our use of real basis orbitals in practice. Then, to

calculate the density at a given grid point, we first find all the atomic basis orbitals, equation (8),
at that point, interpolating the radial part from numerical tables, and then we use (35) to calculate
the density. Notice that only a small number of basis orbitals are nonzero at a given grid point,
so that the calculation of the density can be performed in O(N) operations, once ρµν is known.

12 Notice that our grid cutoff to represent the density is not directly comparable to the energy cutoff in the context
of plane-wave codes, which usually refers to the wavefunctions. Strictly speaking, the density requires a value four
times larger.

φµ

φν

Density matrix

The SOLVER step takes most of the CPU time

Diagonalization-based solvers

3

Need to use DIRECT solvers, as the number of desired
eigenvectors is a substantial fraction of the matrix size

SIESTA uses pre-packaged libraries for this pure math problem:

• ScaLaPACK

• pdsyev, pzheev and related drivers
• MRRR

• ELPA: Alternative transformation sequence + optimizations

• Conversion of H and S to dense form
• Cholesky decomposition to reduce to

standard eigenproblem
• Transformation to tri-diagonal form
• Solution of tri-diagonal problem
• Back-transformation

Cubic scaling with matrix size — Quadratic scaling for memory

Still competitive for low-cardinality basis sets

The SIESTA method for ab initio order-N materials simulation 2757

-40

-20

0

20

40

∆
E

t (
m

eV
) Si

-6

-4

-2

0

2

∆
d

(m
A

ng
)

H2O

-15

-5

5

15

10 30 50 70 90

∆
P

 (
kb

ar
)

Ec (Ry)

-1

0

1

20 60 100 140 180

∆
α

(o)

Ec (Ry)

Figure 5. (a) Convergence of the total energy and pressure in bulk silicon as a function of the
energy cutoff Ecut of the real-space integration mesh. Circles and continuous line: using a grid-cell
sampling of eight refinement points per original grid point. The refinement points are used only in
the final calculation, not during the selfconsistency iteration (see text). Triangles: two refinement
points per original grid point. White circles: no grid-cell sampling. (b) Bond length and angle of
the water molecule as a function of Ecut .

where α, β are spin indices, with up or down values. The coefficients cα
µi are obtained by

solving the generalized eigenvalue problem
∑

νβ

(H αβ
µν − EiSµνδ

αβ)c
β
νi = 0 (39)

where H αβ
µν , like ραβ

µν , is a (2N × 2N) matrix, with N the number of basis functions:

H αβ
µν = ⟨φµ|T̂ + V̂ KB + V NA(r) + δV H(r) + V

αβ
XC(r)|φν⟩. (40)

This is in contrast to the collinear spin case, in which the Hamiltonian and density matrices can
be factorized into two N × N matrices, one for each spin direction. To calculate V

αβ
XC(r) we

first diagonalize the 2 × 2 matrix ραβ(r) at every point, in order to find the up and down spin
densities ρ↑(r), ρ↓(r) in the direction of the local spin vector. We then find V

↑
XC(r), V

↓
XC(r)

in that direction, with the usual local spin density functional [15], and we rotate V
αβ
XC(r) back

to the original direction. Thus, the grid operations are still basically the same, except that they
need now to be repeated three times, for the ↑↑, ↓↓ and ↑↓ components. Notice that ραβ(r)

and V
αβ
XC(r) are locally Hermitian, while H αβ

µν and ραβ
µν are globally Hermitian (H βα

νµ = H αβ∗
µν),

so their ↓↑ components can be obtained from the ↑↓ ones.

8. Brillouin zone sampling

Integration of all magnitudes over the Brillouin zone (BZ) is essential for small and moderately
large unit cells, especially of metals. Although SIESTA is designed for large unit cells, in
practice it is very useful, especially for comparisons and checks, to be able to also perform
calculations efficiently on smaller systems without using expensive superlattices. On the other

https://elpa.mpcdf.mpg.de/

https://elpa.mpcdf.mpg.de/

Direct solution for the density matrix

4

⇢̂ = f�(Ĥ � µ)

BSC 2

1. Introduction

PEXSI is the name of a method that uses a pole expansion representation of the fermi operator
[1] to avoid the diagonalization usually needed in DFT codes. This representation would also yield
the critical O(n3) scaling with the system size, but when dealing with sparse matrices, the selected
inversion algorithm [2, 3] reduces the order to O(n2) for 3D systems and even further for systems with
reduced dimensionality. The implementation of this method is also called PEXSI, and PPEXSI is its
parallel version.

Siesta [4, 5] is a DFT code using localized orbitals as base functions, which results in sparse
Hamiltonian and overlap matrices. Thus this software is particularly interesting for spatially sparse
physical problems. Unfortunately the most powerful, reliable, and general eigenvalue solver, and thus
used in Siesta, is provided by ScaLAPACK, which does neither take advantage of the sparsity of the
matrices, nor does it scale well.

Siesta with PEXSI as solver can be a powerful combination because

• due to the better scaling with the system size (weak scaling) very big problems can be solved

• PEXSI has the potential for parallelization on two levels, enabling an efficient use of tens of
thousands of processors (strong scaling)

• data from SCF and MD iterations can be used for following iterations, which makes long running
calculations more efficient

These effects together make new classes of cutting edge physical problems approachable.

2. The PEXSI method

The algorithm’s name “PEXSI” reflects its two main ingredients: Pole EXpansion and Selected
Inversion.

The basic idea is to avoid diagonalization of the Hamiltonian with its unfavorable O(N3) scaling by
computing the density matrix directly from the Fermi operator. An efficient representation of the Fermi
operator is given by the pole expansion presented in [1]. For evaluating a term in this representation, a
matrix constructed from the Hamiltonian and overlap matrices needs to be inverted, which is basically
also an O(N3) operation. But when dealing with sparse matrices, like the ones generated from Siesta,
the selected inversion algorithm [2] reduces this order by calculating only the elements that are really
needed.

For sufficiently big problems PEXSI gives the following weak scaling:
(quasi-)1D: O(N)
(quasi-)2D: O(N3/2)

3D: O(N2)

2.1. Theory

The central element in DFT is the the electron density ρ̂(x) being the diagonal of the density matrix

γ̂(x, x′) =
∞∑

i=1

ψi(x)fβ(ϵi − µ)ψ⋆
i (x

′) (1)

with the orbitals ψi(x) and their occupation given by the Fermi-Dirac function

fβ(ϵi − µ) =
2

1 + eβ(ϵi−µ)
(2)

Copyright c⃝ 2013 Barcelona Supercomputing Center Internal Report

Fermi-Dirac function

Fermi Operator Expansion (FOE)

the density matrix. Two possible representations
based on a Chebyshev expansion and a rational ex-
pansion will be discussed.

• The Fermi operator projection (FOP) is closely re-
lated to the FOE method. The computable form of
F is not, however, used to construct the entire den-
sity matrix but to find the space spanned by the oc-
cupied states, i.e., the space corresponding to the
eigenfunctions associated with the unit eigenvalues
of the density matrix at zero temperature. These
eigenfunctions can be considered as Wannier func-
tions in the generalized sense defined above.

• In the divide-and-conquer (DC) method for the den-
sity matrix, the relevant parts of the density matrix
are patched together from pieces that were calcu-
lated for smaller subsystems.

• In the density-matrix minimization (DMM) ap-
proach, one finds the density matrix by a minimiza-
tion of an energy expression based on the density
matrix.

• In the orbital minimization approach (OM), one
finds a set of Wannier functions by minimization of
an energy expression.

• The optimal basis density-matrix minimization
scheme (OBDMM) contains aspects of both the OM
and DMM methods. In addition to finding a density
matrix with respect to the basis, one also finds an
optimal basis by additional minimization steps. The
number of basis functions has to be at least equal to
the number of electrons in the system, but can be
larger as well.

A major difference between these methods is whether
they calculate the full density matrix or only its repre-
sentation in terms of Wannier functions. The latter ap-
proach applies only to insulators, while the former is
also applicable to systems with fractional occupation
numbers [i.e., f(!n) is neither 1 nor 0] such as metals or
systems at finite electronic temperature.

In the following each of these six approaches will be
presented in detail.

A. The Fermi operator expansion

The Fermi operator expansion (FOE) (Goedecker
and Colombo, 1994a; Goedecker and Teter, 1995) is the
most straightforward approach for the calculation of the
density matrix. The basic idea in this approach is to find
a representation of the matrix function (19) that can be
evaluated on a computer. Several such representations
are possible. We shall discuss a Chebyshev and a ratio-
nal representation.

1. The Chebyshev Fermi operator expansion

One of the most basic operations a computer can do is
a matrix-times-vector multiplication. The simplest repre-
sentation of the density matrix, requiring only this op-
eration, would be a polynomial representation,

F"p#H $!c0I"c1H"c2H2"¯"cnpl
Hnpl,

where I is the identity matrix. Unfortunately polynomi-
als of high degree become numerically unstable. This
instability can, however, be avoided by introducing a
Chebyshev polynomial representation, which is a widely
used numerical method (Press et al., 1986):

p#H $!
c0

2
I"%

j!1

npl

cjTj#H $. (42)

Since the Chebyshev polynomials are defined only
within the interval :1' , we shall assume in the fol-
lowing that the eigenvalue spectrum of H falls within
this interval. This can always be easily achieved by scal-
ing and shifting of the original Hamiltonian. The Cheby-
shev matrix polynomials Tj(H) satisfy the recursion re-
lations

T0#H $!I , (43)

T1#H $!H , (44)

Tj"1#H $!2HTj#H $#Tj#1#H $. (45)

The expansion coefficients of the Chebyshev expansion
can easily be determined. The eigenfunction representa-
tion [Eq. (21)] of F is

()n!F!)m*!f#!n$+n ,m . (46)

Evaluating the polynomial expansion in the same eigen-
function representation, we obtain

()n!p#H $!)m*!p#!n$+n ,m , (47)

where

p#!$!
c0

2
"%

j!1

npl

cjTj#!$. (48)

Comparing Eqs. (46) and (47), we see that the polyno-
mial p(!) has to approximate the Fermi distribution in
the energy interval :1' where the scaled and shifted
Hamiltonian has its eigenvalues. How to find the Cheby-
shev expansion coefficients for a scalar function is de-
scribed in standard textbooks on numerical analysis
(Press et al., 1986). Actually it is not necessary to take
the exact Fermi distribution. In practically all situations
one is interested in the limit of zero temperature. Hence
any function that approaches a step function in the limit
of zero temperature can be used. For simulations of in-
sulators, for instance, it is advantageous to take the func-
tion f(!)! 1

2 ,1#erf&(!#-)/.!'/ (shown in Fig. 7) since it
decays faster to 0 respectively 1 away from the chemical
potential. We shall use the term Fermi distribution in
this broader sense. The energy resolution .! is chosen to
be a certain fraction of the size of the gap (Goedecker
and Teter, 1995). For metals, .! is chosen by consider-
ations of numerical convenience. Large values of .! will
give lower-accuracy results. However, as pointed out be-
fore, the convergence of the total energy with respect to
.! is quadratic, and thus highly accurate total energies
can be obtained with rather high values of .!
(Goedecker and Teter, 1995). Small values of .! make
the calculation numerically expensive. The detailed scal-
ing behavior of the numerical effort in the limit of van-

1094 Stefan Goedecker: Linear scaling electronic structure methods

Rev. Mod. Phys., Vol. 71, No. 4, July 1999

Calculation of the DM involves only
(sparse) matrix-vector multiplications

Linear-scaling

CheSS library
(originally in BigDFT)

Stephan Mohr (BSC)

• Number of terms in the
expansion can be large

• Efficiency increases for contracted
basis sets.

• Exploring on-the-fly contraction

Direct solution for the density matrix

5

PEXSI: Pole Expansion plus Selected Inversion
(Lin Lin, Chao Yang, et al., Berkeley)

PEXSI FOR SIESTA - PROTOTYPE PHASE 3

Figure 1. Arrangement of the poles encircling the eigenvalue spectrum while avoiding the non-analytic
regions. By courtesy of Chao Yang and Lin Lin.

The chemical potential µ has to yield the correct number of electrons Ne =
∫

ρ(x)dx.

The pole expansion of the Fermi operator is a discretized complex contour integral

fβ(ϵi − µ) ≈ Im
P∑

l=1

ωl

ϵi − (zl + µ)
(3)

The poles zl are the base points and the ωl the corresponding weights of the contour, which is chosen
to encircle the spectrum while excluding the non-analytic regions (figure 1).

This representation needs a relatively small number of poles P , which grows with the inverse
temperature β and the spectrum width ∆E like O(log(β ∆E)).

Based on this expansion one can derive the following expression for the density ρ in the real space
basis of the atomic orbital basis functions φi

ρ̂(x) ≈
∑

ij

φi(x) Im

(
P
∑

l=1

ωl

H − (zl + µ)S

)

︸ ︷︷ ︸

γij

φj(x) (4)

The chemical potential µ is an additional parameter, which has to be set to give the correct number
of electrons

Ne =

∫

ρ(x)dx (5)

For building the inverse (H − (zl + µ)S)−1 = A−1 only selected elements are calculated, using the
method of selected inversion, which is based on a triangular factorization. In case of a symmetric
A, this decomposition can be LDLT . Extracting the first column and row of the matrices, they can
be written as

A =

(

a bT

b Â

)

(A =)LDLT =

(
1
l L̂

)(
α

Â− bbT /α

)(

1 lT

L̂

) (6)

The inversion is based on the recursive scheme

A−1 =

(

α−1 + lTS−1l −lTS−1

−S−1l S−1

)

(7)

Due to the sparsity also the vectors l will be sparse, but with some additional fill-in, depending on the
factorization and preprocessing. Elements lTS−1l corresponding to zero-entries of l will also be zero,
and don’t need to be computed.

Copyright c⃝ 2013 Barcelona Supercomputing Center Internal Report

⇢̂ = Relatively small number of poles (20-30)
Trivially parallelizable over them

(Due to sparsity of the target density matrix)

BSC 2

1. Introduction

PEXSI is the name of a method that uses a pole expansion representation of the fermi operator
[1] to avoid the diagonalization usually needed in DFT codes. This representation would also yield
the critical O(n3) scaling with the system size, but when dealing with sparse matrices, the selected
inversion algorithm [2, 3] reduces the order to O(n2) for 3D systems and even further for systems with
reduced dimensionality. The implementation of this method is also called PEXSI, and PPEXSI is its
parallel version.

Siesta [4, 5] is a DFT code using localized orbitals as base functions, which results in sparse
Hamiltonian and overlap matrices. Thus this software is particularly interesting for spatially sparse
physical problems. Unfortunately the most powerful, reliable, and general eigenvalue solver, and thus
used in Siesta, is provided by ScaLAPACK, which does neither take advantage of the sparsity of the
matrices, nor does it scale well.

Siesta with PEXSI as solver can be a powerful combination because

• due to the better scaling with the system size (weak scaling) very big problems can be solved

• PEXSI has the potential for parallelization on two levels, enabling an efficient use of tens of
thousands of processors (strong scaling)

• data from SCF and MD iterations can be used for following iterations, which makes long running
calculations more efficient

These effects together make new classes of cutting edge physical problems approachable.

2. The PEXSI method

The algorithm’s name “PEXSI” reflects its two main ingredients: Pole EXpansion and Selected
Inversion.

The basic idea is to avoid diagonalization of the Hamiltonian with its unfavorable O(N3) scaling by
computing the density matrix directly from the Fermi operator. An efficient representation of the Fermi
operator is given by the pole expansion presented in [1]. For evaluating a term in this representation, a
matrix constructed from the Hamiltonian and overlap matrices needs to be inverted, which is basically
also an O(N3) operation. But when dealing with sparse matrices, like the ones generated from Siesta,
the selected inversion algorithm [2] reduces this order by calculating only the elements that are really
needed.

For sufficiently big problems PEXSI gives the following weak scaling:
(quasi-)1D: O(N)
(quasi-)2D: O(N3/2)

3D: O(N2)

2.1. Theory

The central element in DFT is the the electron density ρ̂(x) being the diagonal of the density matrix

γ̂(x, x′) =
∞∑

i=1

ψi(x)fβ(ϵi − µ)ψ⋆
i (x

′) (1)

with the orbitals ψi(x) and their occupation given by the Fermi-Dirac function

fβ(ϵi − µ) =
2

1 + eβ(ϵi−µ)
(2)

Copyright c⃝ 2013 Barcelona Supercomputing Center Internal Report

Solver strategies for performance and features: Use external libraries

6

ELSI initiative to integrate solver libraries

Volker Blum, Duke

Future: Solving or Circumventing the Eigenvalue Problem

... in one library? Work in Progress:
“ELSI” - Electronic Structure Infrastructure (NSF-SI2)

VB, Duke

Jianfeng Lu, Duke

Lin Lin, Berkeley

Chao Yang, LBL
Alvaro Vazquez-
Mayagoitia, ANL

Electronic Structure Code

H, S, ... ε, c, D
ELSI interface

ELPA Orbital Minimi-
zation Method

PEXSI
Dense Eigensolver
O(N3)
up to ~1,000s of
atoms

O
th

er
s

(F
ut

ur
e)

Sparse or dense
O(N3)
1,000s of atoms

Density matrix &
reduced scaling
O(N2) at most
>1,000s of atoms

ε, c D D, DOS

HPC platform optimization (distrib. SMP, GPU, manycore)

http://elsi-interchange.org

Fabiano Corsetti,
London

Initiative to integrate solver interfaces

Coordinator:
Volker Blum

+CheSS, SIP solvers

Future: Solving or Circumventing the Eigenvalue Problem

... in one library? Work in Progress:
“ELSI” - Electronic Structure Infrastructure (NSF-SI2)

VB, Duke

Jianfeng Lu, Duke

Lin Lin, Berkeley

Chao Yang, LBL
Alvaro Vazquez-
Mayagoitia, ANL

Electronic Structure Code

H, S, ... ε, c, D
ELSI interface

ELPA Orbital Minimi-
zation Method

PEXSI
Dense Eigensolver
O(N3)
up to ~1,000s of
atoms

O
th

er
s

(F
ut

ur
e)

Sparse or dense
O(N3)
1,000s of atoms

Density matrix &
reduced scaling
O(N2) at most
>1,000s of atoms

ε, c D D, DOS

HPC platform optimization (distrib. SMP, GPU, manycore)

http://elsi-interchange.org

Fabiano Corsetti,
London

Initiative to integrate solver interfaces

Coordinator:
Volker Blum

+CheSS, SIP solvers

Jiangfen Lu, Duke

Future: Solving or Circumventing the Eigenvalue Problem

... in one library? Work in Progress:
“ELSI” - Electronic Structure Infrastructure (NSF-SI2)

VB, Duke

Jianfeng Lu, Duke

Lin Lin, Berkeley

Chao Yang, LBL
Alvaro Vazquez-
Mayagoitia, ANL

Electronic Structure Code

H, S, ... ε, c, D
ELSI interface

ELPA Orbital Minimi-
zation Method

PEXSI
Dense Eigensolver
O(N3)
up to ~1,000s of
atoms

O
th

er
s

(F
ut

ur
e)

Sparse or dense
O(N3)
1,000s of atoms

Density matrix &
reduced scaling
O(N2) at most
>1,000s of atoms

ε, c D D, DOS

HPC platform optimization (distrib. SMP, GPU, manycore)

http://elsi-interchange.org

Fabiano Corsetti,
London

Initiative to integrate solver interfaces

Coordinator:
Volker Blum

+CheSS, SIP solvers

Lin Lin, Berkeley

Interface in Siesta:

Collaboration with
Victor Yu (Duke)

https://elsi-interchange.org

Solver strategies for performance and features: Use external libraries

7

ELSI initiative to integrate solver libraries

Volker Blum, Duke

Future: Solving or Circumventing the Eigenvalue Problem

... in one library? Work in Progress:
“ELSI” - Electronic Structure Infrastructure (NSF-SI2)

VB, Duke

Jianfeng Lu, Duke

Lin Lin, Berkeley

Chao Yang, LBL
Alvaro Vazquez-
Mayagoitia, ANL

Electronic Structure Code

H, S, ... ε, c, D
ELSI interface

ELPA Orbital Minimi-
zation Method

PEXSI
Dense Eigensolver
O(N3)
up to ~1,000s of
atoms

O
th

er
s

(F
ut

ur
e)

Sparse or dense
O(N3)
1,000s of atoms

Density matrix &
reduced scaling
O(N2) at most
>1,000s of atoms

ε, c D D, DOS

HPC platform optimization (distrib. SMP, GPU, manycore)

http://elsi-interchange.org

Fabiano Corsetti,
London

Initiative to integrate solver interfaces

Coordinator:
Volker Blum

+CheSS, SIP solvers

Future: Solving or Circumventing the Eigenvalue Problem

... in one library? Work in Progress:
“ELSI” - Electronic Structure Infrastructure (NSF-SI2)

VB, Duke

Jianfeng Lu, Duke

Lin Lin, Berkeley

Chao Yang, LBL
Alvaro Vazquez-
Mayagoitia, ANL

Electronic Structure Code

H, S, ... ε, c, D
ELSI interface

ELPA Orbital Minimi-
zation Method

PEXSI
Dense Eigensolver
O(N3)
up to ~1,000s of
atoms

O
th

er
s

(F
ut

ur
e)

Sparse or dense
O(N3)
1,000s of atoms

Density matrix &
reduced scaling
O(N2) at most
>1,000s of atoms

ε, c D D, DOS

HPC platform optimization (distrib. SMP, GPU, manycore)

http://elsi-interchange.org

Fabiano Corsetti,
London

Initiative to integrate solver interfaces

Coordinator:
Volker Blum

+CheSS, SIP solvers

Jiangfen Lu, Duke

Future: Solving or Circumventing the Eigenvalue Problem

... in one library? Work in Progress:
“ELSI” - Electronic Structure Infrastructure (NSF-SI2)

VB, Duke

Jianfeng Lu, Duke

Lin Lin, Berkeley

Chao Yang, LBL
Alvaro Vazquez-
Mayagoitia, ANL

Electronic Structure Code

H, S, ... ε, c, D
ELSI interface

ELPA Orbital Minimi-
zation Method

PEXSI
Dense Eigensolver
O(N3)
up to ~1,000s of
atoms

O
th

er
s

(F
ut

ur
e)

Sparse or dense
O(N3)
1,000s of atoms

Density matrix &
reduced scaling
O(N2) at most
>1,000s of atoms

ε, c D D, DOS

HPC platform optimization (distrib. SMP, GPU, manycore)

http://elsi-interchange.org

Fabiano Corsetti,
London

Initiative to integrate solver interfaces

Coordinator:
Volker Blum

+CheSS, SIP solvers

Lin Lin, Berkeley

Interface in Siesta:

Collaboration with
Victor Yu

https://elsi-interchange.org

NTPoly (DM purification, O(N))
DLA-F, ChaSE

GPU acceleration for diagonalization

8

0

200

400

600

800

1000

1 2

se
co
nd
s

nodes

cholesky
fwd-transf
solving

bck-transf
build-dm

x 7

x 7

x 14

CPU

CPU+GPU

4x 5x

Global Speedup

 Marconi-100 (CINECA): 32 CPUs+ 4 GPUs /node

Proper binding of GPUs to MPI ranks

Future enhancements in ELPA (better kernels)
and in ELSI (e.g. build-DM stage) are integrated
in SIESTA automatically

ELSI-ELPA GPU acceleration

System: Si quantum dot, with approx 35000 orbs

Massive scalability: PEXSI solver

9

9

B. Accuracy of the SIESTA-PEXSI approach

For one insulating and one metallic system (The size
of such system does not need to be very large), show the
accuracy of the PEXSI approach compared to the result
from diagonalization with increasing number of poles, af-
ter the SCF iteration.

C. E�ciency of the SIESTA-PEXSI approach

The sets of DNA and C-BN examples are the base
for examining the growth of the computational cost with
system size (weak scaling) as well as the increase of the
solution time with the number of processors (strong scal-
ing). The analysis is based on the time for the calculating
the first SCF step, including the setup of the Hamilto-
nian and, in case of diagonalization, computation of the
density matrix based on the results of the ScaLAPACK
eigenvalue solver. PEXSI uses 40 poles, which requires
for all systems two inertia counts and one µ iteration. In
subsequent SCF iterations information about the chem-
ical potential can be used for lowering the number of
inertia counts or even completely omitting it, reducing
the time per iteration even further.

Siesta-PEXSI is particularly suitable for high perfor-
mance computing, since the two levels of parallelization
allow using a large number processors e�ciently. The
total number of processes can be varied by tuning the
number of processes per pole (ppp) and the number of
poles treated in parallel. The e↵ect of both is demon-
strated in figure 2 for the largest DNA and C-BN sys-
tems examined. Configurations using the same ppp are
connected with lines and show very good scaling. The
first point on each line represents no parallelization over
poles, while the last point corresponds to full paralleliza-
tion. The ine�ciencies in this regime mainly come from
the symbolic factorization. This part can use only a lim-
ited number of processors smaller than ppp and thus does
not scale at all, a↵ecting the performance notable. This
is only a technical issue, related to the libraries currently
used, and will be resolved in future. Then the time for
symbolic factorization will play a only a marginal role.

Increasing the number of processors per pole, demon-
strated by points with the same number of poles treated
in parallel, allows reducing the time even further, but
scales less e�cient than the pole-parallelization. [LL:

Why is this the case? For C-BN it seems that the scaling

from 144ppp to 400ppp reduces the wall clock time by a

factor of 2, which is reasonably good.]

Due to the similar numbers of orbitals of both ex-
amples, diagonalization times are alike, but throughout
the tests much higher than the sulution times of Siesta-
PEXSI. In the case of C-BN0.00 the Siesta-PEXSI ap-
proach is one order of magnitude faster and allows an
e�cient use of more than 10000 cores, while the scalig
of diagonalization is limited to about half of this. For
DNA-25 less processors per pole are used since this ex-

ample features sparser matrices. On the other hand this
sparsity makes the solver work two orders of magnitude
faster than diagonalization.
Another consequence of PEXSI dealing only with

sparse matrices is the smaller demand of memory. While
on Edison the memory of at least 1000 cores is needed
for ScaLAPACK, Siesta-PEXSI needs only 144 cores for
C-BN0.00 and 64 for DNA-25. In the case of DNA even
this minimal configuration is more than four times faster
than diagonalization with 5120 processors.

FIG. 2. Strong scaling of C-BN0.00 and DNA-25 based on
the total time for the first SCF step. The various lines for
PEXSI result from using di↵erent numbers of processors per
pole (ppp), while the points on each curve belong to compu-
tations with 1, 2, 5, 10, 20, and 40 poles in parallel.

PEXSI’s beneficial scaling with the system size, as de-
scribed in section IIC, guarantees that for large enough
systems Siesta-PEXSI will always be faster than diag-
onalization. The scaling of the computational cost is
demonstrated for DNA and C-BN in figure 3.
In all tests full parallelization over poles is used. In

this configuration the influence of the symbolic factoriza-
tion would change the character of the method. Because
in future this influence will be negligible, the time for
symbolic factorization is not taken into account for the
analysis.
The numbers of processes for each system size are cho-

sen to be an e�cient trade-o↵ of reducing the time to
solution while keeping the cost, which increases with the
number of processes due to ine�ciencies, as small as pos-
sible. Following this guideline it turns out, that for C-
BN one can use more processors with Siesta-PEXSI than
with ScaLAPACK. This also means, that the advantage
of Siesta-PEXSI in terms of solution-time is even larger
than the benefit of cost. For very sparse problems, like
the largest DNA examples, the amount of processors that
can be used is similar for both methods, but Siesta-
PEXSI is about two orders of magnitude faster. More
details are listed in table II.
The analysis shows, besides Siesta-PEXSI’s favorable

170,000 orbs

180,000 orbs

1D, sp=0.27%

2D, sp=0.91%

PEXSI FOR SIESTA - PROTOTYPE PHASE 7

3.3.2. Systems examined

MoS-BN is with its 638 atoms still relatively small, but interesting to compare with DNA. These
systems have roughly the same size, but due to the denser packing of the atoms in the layered system,
its fraction of nonzeros is much larger.

The basic C-BN-C unit cell used here is the smallest one possible for this combination of materials,
but contains already about 2500 atoms. To simulate larger problems, as well as for doing a weak
scaling analysis, supercells containing 2x2 and 4x2 unit cells were constructed.

Figure 3. Visualization of the C-BN-C example. On the left hand side a single unit cell is shown, on
the right hand side a magnified top-view of a part of it, displaying the effect of the slightly differing

atomic distances.

Copyright c⃝ 2013 Barcelona Supercomputing Center Internal Report

PEXSI offers:

• Three levels of parallelization
(over orbitals, poles,
 and chemical potential values)

• A reduced memory footprint
(only sparse matrices are stored)

• Reduced complexity
(maximum O(N2) size scaling)

PEXSI FOR SIESTA - PROTOTYPE PHASE 3

Figure 1. Arrangement of the poles encircling the eigenvalue spectrum while avoiding the non-analytic
regions. By courtesy of Chao Yang and Lin Lin.

The chemical potential µ has to yield the correct number of electrons Ne =
∫

ρ(x)dx.

The pole expansion of the Fermi operator is a discretized complex contour integral

fβ(ϵi − µ) ≈ Im
P∑

l=1

ωl

ϵi − (zl + µ)
(3)

The poles zl are the base points and the ωl the corresponding weights of the contour, which is chosen
to encircle the spectrum while excluding the non-analytic regions (figure 1).

This representation needs a relatively small number of poles P , which grows with the inverse
temperature β and the spectrum width ∆E like O(log(β ∆E)).

Based on this expansion one can derive the following expression for the density ρ in the real space
basis of the atomic orbital basis functions φi

ρ̂(x) ≈
∑

ij

φi(x) Im

(
P
∑

l=1

ωl

H − (zl + µ)S

)

︸ ︷︷ ︸

γij

φj(x) (4)

The chemical potential µ is an additional parameter, which has to be set to give the correct number
of electrons

Ne =

∫

ρ(x)dx (5)

For building the inverse (H − (zl + µ)S)−1 = A−1 only selected elements are calculated, using the
method of selected inversion, which is based on a triangular factorization. In case of a symmetric
A, this decomposition can be LDLT . Extracting the first column and row of the matrices, they can
be written as

A =

(

a bT

b Â

)

(A =)LDLT =

(
1
l L̂

)(
α

Â− bbT /α

)(

1 lT

L̂

) (6)

The inversion is based on the recursive scheme

A−1 =

(

α−1 + lTS−1l −lTS−1

−S−1l S−1

)

(7)

Due to the sparsity also the vectors l will be sparse, but with some additional fill-in, depending on the
factorization and preprocessing. Elements lTS−1l corresponding to zero-entries of l will also be zero,
and don’t need to be computed.

Copyright c⃝ 2013 Barcelona Supercomputing Center Internal Report

⇢̂ =

Comparison of global efficiency of solvers for a very large problem

10

HORIZON2020 ​European Centre of Excellence

Deliverable D4.3
Second report on code profiling and bottleneck
identification

Fig. 19 presents another view of the benchmark emphasizing cost, and also nicely

showing the level of scaling of the different methods by the deviation from horizontal

lines. If cost is the main concern, then the GPU-accelerated diagonalization wins

(although it might be argued that nodes with GPUs should be charged at a higher rate

than CPU-only nodes; this point is moot on Marconi 100, but could be relevant

elsewhere).

Figure 20: ​Total cost (per scf step) vs time-to-solution for the virus protein problem, with
approximately 58000 orbitals. CPU and GPU usage details as in Fig. 12 . The PEXSI lines
correspond to different numbers of tasks per pole (from right to left: 8, 16, 32, 64, 128).

Yet another way to look at the issues involved is provided by Fig. 20 . Here proximity

to the lower-left corner represents the overall “goodness” of the method. Also, the

(negative) slope of a line reflects the marginal cost of diminishing the

time-to-solution, which is lower in the PEXSI method, but note that there is a sharp

drop in efficiency when going from tpp=32 to tpp=64. This obviously reflects the fact

that the intra-pole parallelization now needs to perform communications with other

nodes, with higher latency. In this benchmark we did not go beyond tpp=128, but it

would be interesting to try larger systems and see if they can maintain a good scaling

www.max-centre.eu
33

SARS CoV-2 Mpro with solvation water molecules

Approx 8800 atoms; 58000 orbitals

Work on GPU acceleration of PEXSI library is under way

Solver selection in Siesta: SolutionMethod keywords

11

Solution-Method PEXSI

Original native interface
Iterative search for µ
instead of parallel interpolation

Solution-Method diagon

diag-algorithm:

divide-and-Conquer
expert
MRRR
ELPA | ELPA-2stage
ELPA-1stage
…

ScalaPack solvers and
ELPA with native interface

Solution-Method ELSI

Uniform interface for
the ELSI library of solvers:

elsi-solver:

• elpa

• omm

• pexsi

• ntpoly

Solver selection in Siesta: ELPA solver

12

step makes extensive use of memory-bound, BLAS level-2 matrix-vector op-
erations, whose performance is limited on modern computer architectures.

The two-stage tridiagonalization algorithm proposed by Bischof, Sun,
and Lang [14, 15] is an established alternative to the conventional one-stage
method. As shown in Eq. 6 below and further illustrated in Fig. 1, the
tridiagonalization of the full matrix H̃ is carried out in two transformations.
The first transformation P reduces H̃ to a banded matrix B, and the second
transformation Q reduces B to a tridiagonal matrix T . The eigenvalues ⌃
and eigenvectors X of T are solved as done in the one-stage method. The
back-transformation of eigenvectors is also carried out in two steps. X is first
back-transformed to Y , the eigenvectors of B, then to C̃, the eigenvectors
of H̃ .

B = PH̃P
⇤, (6a)

T = QBQ
⇤, (6b)

TX = X⌃, (6c)

Y = Q
⇤
X, (6d)

C̃ = P
⇤
Y . (6e)

Figure 1: Computational steps of the two-stage tridiagonalization approach: the reduction

of the full matrix H̃ to a banded matrixB, the reduction of the banded matrixB to a tridi-

agonal matrix T , the solution of the tridiagonal eigenproblem, the back-transformation of

the eigenvectors to the banded form, and the back-transformation of the eigenvectors to

the full form. Matrix size N = 17. Semi-bandwidth b = 4.

This two-stage tridiagonalization approach is implemented in several lin-
ear algebra software packages [16, 17, 32, 49, 52, 55], including a high-
performance distributed-memory implementation in the ELPA library [16,

7

Two-Stage Tridiagonalization in ELPA2

Two flavors of the ELPA solver are available:
• ELPA1: One-stage tridiagonalization
• ELPA2: Two-stage tridiagonalization

 (with specialized kernels)

CPU-ELPA2 outperforms CPU-ELPA1 .
GPU-ELPA1 is marginally faster than GPU-ELPA2 for small node counts.
GPU-ELPA2 becomes faster than GPU-ELPA1 as the node count increases.

(Relative performance depends on
archictecture and evolves with new releases…)

ELSI.ELPA.Flavor (1 | 2)
ELSI.ELPA.GPU (0 | 1)
ELSI.ELPA.NSinglePrecision

diag-elpa-gpu (F | T)

ELSI interface (preferred)

(SolutionMethod diagon)

ELSI-ELPA parallelizes over k-points, spins, and orbitals

Solver selection in Siesta: ELSI solvers (PEXSI)

13

solution-method elsi
elsi-solver pexsi
elsi-pexsi-tasks-per-pole 2
elsi-pexsi-number-of-poles 20
elsi-pexsi-number-of-mu-points 2
elsi-output-level 3

Maximum parallelization levels:

tpp=2: 2*20*2: 80 MPI ranks
tpp=32: 32*20*2: 1280 MPI ranks (40 32-cpu nodes)
tpp=64: 64*20*2: 2560 MPI ranks (80 32-cpu nodes) (**)

HORIZON2020 ​European Centre of Excellence

Deliverable D4.3
Second report on code profiling and bottleneck
identification

Fig. 19 presents another view of the benchmark emphasizing cost, and also nicely

showing the level of scaling of the different methods by the deviation from horizontal

lines. If cost is the main concern, then the GPU-accelerated diagonalization wins

(although it might be argued that nodes with GPUs should be charged at a higher rate

than CPU-only nodes; this point is moot on Marconi 100, but could be relevant

elsewhere).

Figure 20: ​Total cost (per scf step) vs time-to-solution for the virus protein problem, with
approximately 58000 orbitals. CPU and GPU usage details as in Fig. 12 . The PEXSI lines
correspond to different numbers of tasks per pole (from right to left: 8, 16, 32, 64, 128).

Yet another way to look at the issues involved is provided by Fig. 20 . Here proximity

to the lower-left corner represents the overall “goodness” of the method. Also, the

(negative) slope of a line reflects the marginal cost of diminishing the

time-to-solution, which is lower in the PEXSI method, but note that there is a sharp

drop in efficiency when going from tpp=32 to tpp=64. This obviously reflects the fact

that the intra-pole parallelization now needs to perform communications with other

nodes, with higher latency. In this benchmark we did not go beyond tpp=128, but it

would be interesting to try larger systems and see if they can maintain a good scaling

www.max-centre.eu
33

(tpp) Configurable

n_mu=2 is typically appropriate

PEXSI FOR SIESTA - PROTOTYPE PHASE 3

Figure 1. Arrangement of the poles encircling the eigenvalue spectrum while avoiding the non-analytic
regions. By courtesy of Chao Yang and Lin Lin.

The chemical potential µ has to yield the correct number of electrons Ne =
∫

ρ(x)dx.

The pole expansion of the Fermi operator is a discretized complex contour integral

fβ(ϵi − µ) ≈ Im
P∑

l=1

ωl

ϵi − (zl + µ)
(3)

The poles zl are the base points and the ωl the corresponding weights of the contour, which is chosen
to encircle the spectrum while excluding the non-analytic regions (figure 1).

This representation needs a relatively small number of poles P , which grows with the inverse
temperature β and the spectrum width ∆E like O(log(β ∆E)).

Based on this expansion one can derive the following expression for the density ρ in the real space
basis of the atomic orbital basis functions φi

ρ̂(x) ≈
∑

ij

φi(x) Im

(
P
∑

l=1

ωl

H − (zl + µ)S

)

︸ ︷︷ ︸

γij

φj(x) (4)

The chemical potential µ is an additional parameter, which has to be set to give the correct number
of electrons

Ne =

∫

ρ(x)dx (5)

For building the inverse (H − (zl + µ)S)−1 = A−1 only selected elements are calculated, using the
method of selected inversion, which is based on a triangular factorization. In case of a symmetric
A, this decomposition can be LDLT . Extracting the first column and row of the matrices, they can
be written as

A =

(

a bT

b Â

)

(A =)LDLT =

(
1
l L̂

)(
α

Â− bbT /α

)(

1 lT

L̂

) (6)

The inversion is based on the recursive scheme

A−1 =

(

α−1 + lTS−1l −lTS−1

−S−1l S−1

)

(7)

Due to the sparsity also the vectors l will be sparse, but with some additional fill-in, depending on the
factorization and preprocessing. Elements lTS−1l corresponding to zero-entries of l will also be zero,
and don’t need to be computed.

Copyright c⃝ 2013 Barcelona Supercomputing Center Internal Report

⇢̂ =

Solvers: Parameters that affect performance

14

• Use the right algorithm
• Proper number of MPI ranks
• (MPI ranks / number of GPUs)
• Diag.Blocksize
• Use tailored NumberOfEigenStates
• Consider ELSI.ELPA.N.SinglePrecision

+ Architectural and systems issues:
+ Proper building (e.g. external ELPA library)
+ Mapping to underlying hardware

https://gitlab.com/siesta-project/ecosystem/build-tools.git
(+ Lecture on building, deployment, and execution)

https://gitlab.com/siesta-project/ecosystem/build-tools.git

GPU binding

GPU Binding

GPU Binding is extremely important

By GPU binding, we mean setting up proper

CPU bindings and environment variables so

that only CPUs that are physically close to a
GPU use that same device.

Otherwise performance can degrade pretty
fast.

Source: LUMI Documentation

Source: Marconi100 Docs

GPU and CPU binding

GPU Binding
CPU ID, not Task ID!

GPU and CPU binding

GPU Binding

Where can we find this info?
● From the HPC Center documentation (with varying degrees of detail).

● Running commands like $ nvidia-smi topology, for NVidia cards (on compute nodes).

● Running commands like $ hwloc (on compute nodes).

And even then…
You will still need to search for the right number of MPI tasks and OpenMP threads per GPU.

18

Thanks !

