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A quick refreshment of DFT

• Kohn-Sham equations:

෠𝑉𝑒𝑥𝑡 𝐫 ⇔ 𝑛 𝐫
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∇2 + ෠𝑉KS 𝐫

෠𝑉KS 𝐫 = ෠𝑉𝑒𝑥𝑡 𝐫 + ෠𝑉𝐻𝑎𝑟𝑡𝑟𝑒𝑒 𝐫 + ෠𝑉𝑥𝑐 𝐫
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A quick refreshment of DFT

𝐻𝜇𝜈𝐶𝑗𝜈 = 𝜀𝑗𝑆𝜇𝜈𝐶𝑗𝜈

• Basis expansion:
𝑛 𝐫 =෍

𝑖

𝑁

𝜓𝑖
KS 𝐫

2

෡𝐻KS𝜓𝑗
KS 𝐫 = 𝜀𝑗𝜓𝑗

KS 𝐫

ൿȁ𝜓𝑖
KS

𝐫 = ෍

𝜇=1

𝑀

𝑐𝑖,𝜇 ۧȁ𝜇

Basis functions

Generalized eigenvalue problem:

𝐻𝜇𝜈 = 𝜇 ෡𝐻 𝜈

𝑆𝜇𝜈 = 𝜇 𝜈

Overlap matrix:

Hamiltonian matrix:

Completely general

(even for non-orthogonal basis sets) 
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• Particle density:
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Basis sets

• Periodic boundary conditions (PBC):

We can use the Bloch theorem

𝐻𝜇𝜈 𝒌 𝐶𝑗𝜈 𝒌 = 𝜀𝑗,𝒌𝑆𝜇𝜈 𝒌 𝐶𝑗𝜈 𝒌

𝐻𝜇𝜈 𝒌 = 𝜇𝒌 ෡𝐻 𝜈𝒌 =෍

𝐑

𝑒−𝑖𝒌𝐑 𝜇𝟎 ෡𝐻 𝜈𝐑Hamiltonian matrix:

ൿȁ𝜓
𝑖
KS

𝐫 = ෍

𝜇=1

𝑀

𝑐𝑖,𝜇 ۧȁ𝜇

ൿۧȁ𝜇 ⇒ ȁ𝜇𝒌 =
1

𝑁
෍

𝜇

𝑒−𝑖𝒌𝐑 ۧȁ𝜇𝐑

Generalized eigenvalue problem:

ൿۧȁ𝜇 ⇒ ȁ𝑛𝒌 =
1

𝑁
෍

𝜇,𝐑

𝑐𝑛,𝜇 𝒌 𝑒−𝑖𝒌𝐑 ۧȁ𝜇𝐑
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Basis functions: Types

• Representation of the Hilbert space for the electronic wavefunctions

• There are many types:
• Planewaves

• Atomic orbitals

• Wavelets

• Bessel functions

• Augmented plane waves

• Muffin-tin orbitals

• …
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• Representation of the Hilbert space for the electronic wavefunctions

• There are many types:
• Planewaves

• Atomic orbitals

• Wavelets

• Bessel functions

• Augmented plane waves

• Muffin-tin orbitals

• …



• Advantages:
• Good for writing equations with PBC

• Expressions for H are simple (Fast Fourier Transform)

• Convergence: Systematic and complete

• Orthogonal

• Spatially unbiased

• Disadvantages:
• Vacuum is expensive! (Costs as much as matter).

• We need a large number of PW per electron

• Compact orbitals are harder to describe

• Localization ideas are not easy to implement

S

Basis functions: Plane waves (PW)
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Basis functions: Atomic orbitals
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Atomic orbitals

ൿȁ𝜓𝑖
KS

𝐫 = ෍

𝜇=1

𝑀

𝑐𝑖,𝜇 ۧȁ𝜇

𝐫 𝜇 = 𝜙𝜇 𝐫 → 𝜙𝜇 𝐫 − 𝐑𝐼
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𝜙𝜇 𝐫 − 𝐑𝐼 ≡ 𝜙𝐼𝑝𝑙𝑚 𝐫𝐼 = 𝑅𝐼𝑝𝑙 r 𝑌𝑙𝑚 𝐫𝐼

LCAO methods

Orbitals close to the solutions of the  
atomic problem are good approximations
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Taken from: https://chem.libretexts.org/

𝜙𝜇 𝐫 − 𝐑𝐼 ≡ 𝜙𝐼𝑝𝑙𝑚 𝐫𝐼 = 𝑅𝐼𝑝𝑙 r 𝑌𝑙𝑚 𝐫𝐼
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Atomic orbitals
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Radial
function

Spherical harmonics
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Atomic orbitals

ൿȁ𝜓𝑖
KS

𝐫 = ෍

𝜇=1

𝑀

𝑐𝑖,𝜇 ۧȁ𝜇

𝐼 → Atom index

𝑙 → Angular momentum

𝑝 → Multiple orbitals for the same 𝑙𝑚

𝑚 → Magnetic quantum number

𝜙𝜇 𝐫 − 𝐑𝐼 ≡ 𝜙𝐼𝑝𝑙𝑚 𝐫𝐼 = 𝑅𝐼𝑝𝑙 r 𝑌𝑙𝑚 𝐫𝐼

LCAO methods

Orbitals close to the solutions of the  
atomic problem are good approximations

Radial
function

Spherical harmonics
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Atomic orbitals
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𝜙𝜇 𝐫 − 𝐑𝐼 ≡ 𝜙𝐼𝑝𝑙𝑚 𝐫𝐼 = 𝑅𝐼𝑝𝑙 r 𝑌𝑙𝑚 𝐫𝐼

LCAO methods

Orbitals close to the solutions of the  
atomic problem are good approximations

Radial
function

Spherical harmonics

Very common (tradition) from quantum chemistry methods:
• Slater-type orbitals (STO)

• Gaussian-type orbitals (GTO)

• Contracted Gaussian-type orbitals

• Numerical real-space grid



• Advantages:
• Very efficient in terms of number of orbitals per electrons.

• Very well suited to describe localization.

• Large reduction in CPU and memory costs.

• No need for periodicity.

• Vacuum is almost free.

• Chemical information (charge population, projected density of states, etc).S

Atomic orbitals



• Advantages:
• Very efficient in terms of number of orbitals per electrons.

• Very well suited to describe localization.

• Large reduction in CPU and memory costs.

• No need for periodicity.

• Vacuum is almost free.

• Chemical information (charge population, projected density of states, etc).

• Disadvantages:
• Lack of systematics for convergence.

• Require human and computational effort to get a good basis set before use.

• Spatially biased, since they are optimal for an atomic problem: Basis Set Superposition Error.

• Orbitals move with atoms, which brings extra terms in forces (Pulay corrections).

• Calculation of Hamiltonian matrix elements can be quite complicated (and expensive).

S

Atomic orbitals
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Atomic orbitals

𝜙𝜇 𝐫 − 𝐑𝐼 ≡ 𝜙𝐼𝑝𝑙𝑚 𝐫𝐼 = 𝑅𝐼𝑝𝑙 r 𝑌𝑙𝑚 𝐫𝐼
Radial

flexibility
Spherical harmonics

• Mininal basis set (single-ζ or SZ)
• One single radial function per angular momentum shell occupied in the free atom

• Multiple-ζ
• Add more than one radial function with the same angular momentum.

• double-ζ (DZ), triple-ζ (TZ), cuadruple-ζ (QZ), …

• Diffuse functions
• Add radial function on pre-existing valence shell, with longer tail than free atom 
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Atomic orbitals

𝜙𝜇 𝐫 − 𝐑𝐼 ≡ 𝜙𝐼𝑝𝑙𝑚 𝐫𝐼 = 𝑅𝐼𝑝𝑙 r 𝑌𝑙𝑚 𝐫𝐼
Radial

flexibility

• Minimal basis set (single-ζ or SZ)
• One single radial function per angular momentum shell occupied in the free atom

• Multiple-ζ
• Add more than one radial function with the same angular momentum.

• double-ζ (DZ), triple-ζ (TZ), cuadruple-ζ (QZ), …

• Diffuse functions
• Add radial function on pre-existing valence shell, with longer tail than free atom 

• Polarization orbitals

• Add new shells with larger value of “𝑙” 

• d-orbitals for C, N, O, …

• f-orbitals for Mn, Fe, …

Angular
flexibility
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Basis sets: Hierarchy

• Generating basis sets for a calculation:
1. Start from SZ

2. Increase both the number of ζ and polarization functions one by one

General philosophy: Larger number of orbitals → Better quality of basis set.
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Basis sets: Hierarchy

• Generating basis sets for a calculation:
1. Start from SZ

2. Increase both the number of ζ and polarization functions one by one

General philosophy: Larger number of orbitals → Better quality of basis set.

Single-ζ Multiple-ζ
Polarization

Diffuse orbitals

Cheap 
exploratory
calculations

Highly
converged
calculations
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Basis sets: Examples
SZ

3𝑠2 3𝑝2

Total number of orbitals:

Valence
electrons

1 𝑠
1 𝑝𝑥
1 𝑝𝑦
1 𝑝𝑧

#orbitals symmetry

4
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1 𝑑𝑥2−𝑦2

1 𝑑3𝑧2−𝑟2

#orbitals symmetry

13 DZ+P = DZP



1 𝑠
1 𝑑𝑥𝑦
1 𝑑𝑦𝑧
1 𝑑𝑧𝑥
1 𝑑𝑥2−𝑦2

1 𝑑3𝑧2−𝑟2
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Basis sets: Examples
SZ

3𝑠2 3𝑝2

Total number of orbitals:

Valence
electrons

1 𝑠
1 𝑝𝑥
1 𝑝𝑦
1 𝑝𝑧

#orbitals symmetry

4𝑠2 3𝑑6

4

DZ

2 𝑠
2 𝑝𝑥
2 𝑝𝑦
2 𝑝𝑧

#orbitals symmetry

8

Polarization (P)

1 𝑑𝑥𝑦
1 𝑑𝑦𝑧
1 𝑑𝑧𝑥
1 𝑑𝑥2−𝑦2

1 𝑑3𝑧2−𝑟2

#orbitals symmetry

13 DZ+P = DZP

SZ

Total number of orbitals:

Valence
electrons

#orbitals symmetry

6

DZ

1 𝑝𝑥
1 𝑝𝑦
1 𝑝𝑧

#orbitals symmetry

12

Polarization (P)

#orbitals symmetry

15 DZ+P = DZP
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Basis sets: Convergence

Phys. Rev. B 64, 235111 (2001)
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• Polarization orbitals are important for 
convergence.

• DZP basis is usually “good enough” as 
compared to converged PW calculations.

• Deviations are comparable to differences 
due to pseudopotentials or XC functionals
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Basis sets: Convergence

Phys. Rev. B 64, 235111 (2001)

• Polarization orbitals are important for 
convergence.

• DZP basis is usually “good enough” as 
compared to converged PW calculations.

• Deviations are comparable to differences 
due to pseudopotentials or XC functionals

WARNING!! Basis can be optimized to get better agreement with 

experiments. That doesn’t necessarily mean the basis set is better. There 

are other approximations implied (e.g. the xc functional) that could be 

responsible for disagreements between calculations and experiments!! 
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Atomic orbitals: SIESTA

• Linear combination of numerical pseudo atomic orbitals (PAO)

• Strictly localized: Zero beyond a certain radius from the nucleus: The cutoff radii (rc)

𝜙𝐼𝑝𝑙𝑚 𝐫𝐼 = 𝑅𝐼𝑝𝑙 r 𝑌𝑙𝑚 𝐫𝐼
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Atomic orbitals: SIESTA

• Linear combination of numerical pseudo atomic orbitals (PAO)

• Strictly localized: Zero beyond a certain radius: The cutoff radius (rc)

𝜙𝐼𝑝𝑙𝑚 𝐫𝐼 = 𝑅𝐼𝑝𝑙 r 𝑌𝑙𝑚 𝐫𝐼

▪ As many 𝑙 and zetas (ζ) that you want 

▪ Any (radial) shape

▪ As long as you want: rc

▪ Any center (not restricted to atom’s position)

▪ Numerical pseudo-atomic orbitals (PAO)
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Atomic orbitals: SIESTA

𝑅𝐼𝑝𝑙 r is automatically generated by SIESTA

• Based on finite-range pseudo-atomic orbitals [FIREBALLS: Sankey & Niklewski, Phys. Rev. B 40, 3979 (1989)]

• Numerical solution of a pseudoatom + some “modifications”

• Depends on parameters that need to be defined by the user

• Quite tunable

• Various levels of automatism, and predefinition of default values for parameters

𝜙𝐼𝑝𝑙𝑚 𝐫𝐼 = 𝑅𝐼𝑝𝑙 r 𝑌𝑙𝑚 𝐫𝐼
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Atomic orbitals: SIESTA

𝑅𝐼𝑝𝑙 r is automatically generated by SIESTA

• Solution of a Kohn-Sham DFT calculation of a (isolated) pseudo-atom under an added confinement potential

𝜙𝐼𝑝𝑙𝑚 𝐫𝐼 = 𝑅𝐼𝑝𝑙 r 𝑌𝑙𝑚 𝐫𝐼

Radial equation−
1

2𝑟

𝑑2

𝑑𝑟2
𝑟 +

𝑙 𝑙 + 1

2𝑟2
+ 𝑉𝑙(𝑟) 𝑅𝑙 𝑛 = 𝜀𝑙 + 𝛿𝜀𝑙 𝑅𝑙 𝑟
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Atomic orbitals: SIESTA

𝑅𝐼𝑝𝑙 r is automatically generated by SIESTA

• Solution of a Kohn-Sham DFT calculation of a (isolated) pseudo-atom under an added confinement potential

𝜙𝐼𝑝𝑙𝑚 𝐫𝐼 = 𝑅𝐼𝑝𝑙 r 𝑌𝑙𝑚 𝐫𝐼

Radial equation

Energy shift:

Single parameter to choose rc

−
1

2𝑟

𝑑2

𝑑𝑟2
𝑟 +

𝑙 𝑙 + 1

2𝑟2
+ 𝑉𝑙(𝑟) 𝑅𝑙 𝑛 = 𝜀𝑙 + 𝛿𝜀𝑙 𝑅𝑙 𝑟
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Atomic orbitals: SIESTA

𝑅𝐼𝑝𝑙 r is automatically generated by SIESTA

• Solution of a Kohn-Sham DFT calculation of a (isolated) pseudo-atom under an added confinement potential

𝜙𝐼𝑝𝑙𝑚 𝐫𝐼 = 𝑅𝐼𝑝𝑙 r 𝑌𝑙𝑚 𝐫𝐼

−
1

2𝑟

𝑑2

𝑑𝑟2
𝑟 +

𝑙 𝑙 + 1

2𝑟2
+ 𝑉𝑙(𝑟) 𝑅𝑙 𝑛 = 𝜀𝑙 + 𝛿𝜀𝑙 𝑅𝑙 𝑟 Radial equation

Energy shift:

Single parameter to choose rc

The larger the Energy Shift, the shorter the rc

Phys. Stat. Solidi (b) 215, 809 (1999)



First-ζ

1. Hard wall potential

2. Soft confinement potential

S

Atomic orbitals: SIESTA

𝜙𝐼𝑝𝑙𝑚 𝐫𝐼 = 𝑅𝐼𝑝𝑙 r 𝑌𝑙𝑚 𝐫𝐼

ቐ
𝑉 𝑟 < 𝑎 = 0

𝑉 𝑟 ≥ 𝑎 = ∞

𝑉 𝑟 = 𝑉0
𝑒
−
𝑟𝑐−𝑟𝑖
𝑟−𝑟𝑖

𝑟𝑐 − 𝑟

▪ Orbitals with discontinuous 

first derivates at rc

▪ Orbitals with continuous derivates

▪ Strictly localized (zero at rc)

▪ Two parameters to optimize

Phys. Rev. B 64, 235111 (2001)



Multiple-ζ
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Atomic orbitals: SIESTA

𝜙𝐼𝑝𝑙𝑚 𝐫𝐼 = 𝑅𝐼𝑝𝑙 r 𝑌𝑙𝑚 𝐫𝐼



Multiple-ζ

1. Pseudoatom-wavefunctions with increasing number of nodes:

(excited states of the confined pseudo-atom).

S

Atomic orbitals: SIESTA

𝜙𝐼𝑝𝑙𝑚 𝐫𝐼 = 𝑅𝐼𝑝𝑙 r 𝑌𝑙𝑚 𝐫𝐼

✓ Orthogonality

✓ Asymptotically complete (within sphere)

Phys. Rev. B 69, 195113 (2004)

× Unbound excited states of pseudos

× Efficiency requires longer cutoff radius



Multiple-ζ

2. Split-valence method:

Atomic orbitals: SIESTA

𝜙𝐼𝑝𝑙𝑚 𝐫𝐼 = 𝑅𝐼𝑝𝑙 r 𝑌𝑙𝑚 𝐫𝐼

▪ Choose 𝑟𝑙
𝑠 and continue smoothly towards

the origin as 𝑟𝑙 𝑎𝑙 − 𝑏𝑖 𝑟
2

▪ Two parameters: (a and b): the new orbitals

and its first derivates must be continuous at 𝑟𝑙
𝑠

▪ The second-ζ is the (normalized) difference

between the first-ζ and the function above

▪ 𝑟𝑙
𝑠 is controlled with PAO.Splitnorm (default = 0.15)

Phys. Stat. Solidi (b) 215, 809 (1999)

൞
χ𝑙
2ζ

𝑟 = 𝑟𝑙 𝑎𝑙 − 𝑏𝑖 𝑟
2 𝑖𝑓 𝑟 < 𝑟𝑙

𝑠

χ𝑙
2ζ

𝑟 = χ𝑙
1ζ

𝑟 𝑖𝑓 𝑟 ≥ 𝑟𝑙
𝑠



Generation of the polarization orbitals

Atomic orbitals: SIESTA

𝜙𝐼𝑝𝑙𝑚 𝐫𝐼 = 𝑅𝐼𝑝𝑙 r 𝑌𝑙𝑚 𝐫𝐼

Shell with a higher angular momentum to polarize the most extended 
valence orbital (𝑙) to give angular freedom to the valence electrons



Generation of the polarization orbitals

1. Perturbative polarization

• Free pseudo atom valence orbitals under an external electric field

• 𝑙 + 1 orbitals with the same range of the unperturbed orbitals

2. Atomic polarization

• Solve the Schrödinger equation for a free 
pseudo atom with higher angular momentum

• Usually unbound: requires short cutoffs 

Atomic orbitals: SIESTA

𝜙𝐼𝑝𝑙𝑚 𝐫𝐼 = 𝑅𝐼𝑝𝑙 r 𝑌𝑙𝑚 𝐫𝐼

Phys. Stat. Solidi (b) 215, 809 (1999)

Polarization d orbitals for silicon
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Atomic orbitals: SIESTA

J. Phys.: Condens. Matter 14, 2745 (2002)

Convergence with the cutoff radius

Shorter radii

More efficient More accurate

Larger radii

WARNING!!

Basis can be optimized to get better agreement with experiments. That

doesn’t necessarily mean the basis set is better. There are other

approximations implied (e.g. the XC functional) that could be responsible

for disagreements between calculations and experiments!!
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Small recap



S

Small recap

• Generating basis sets for a calculation:
1. Start from SZ

2. Increase both the number of ζ and polarization functions one by one

General philosophy: Larger number of orbitals → Better quality of basis set.

Single-ζ

Cheap 
exploratory
calculations

Highly
converged
calculations

Multiple-ζ
Polarization

Diffuse orbitals
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Small recap

• Generating basis sets for a calculation:
1. Start from SZ

2. Increase both the number of ζ and polarization functions one by one

General philosophy: Larger number of orbitals → Better quality of basis set.

• In SIESTA

✓Multiple options to generate basis sets

✓ Hierarchical structure

✓ Decent enough default basis sets (even more for versions > 5.0)

• Warning 1: Optimal orbitals are environment dependent!!!

• Warning 2: Basis can be optimized to get better agreement with  experiments. 
That doesn’t necessarily mean the basis set is better!! 
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General advice

• Tests your basis set before doing serious calculations
▪ Although the default basis is usually a good starting point, it is important that you verify it is 

appropriate for your system. 
▪ (C orbitals in diamond are not necessarily good for molecular CO2, or graphene)

▪ If going to calculate for months or years, it is a good idea to spend a few days trying out 
bases and testing parameters is definitely worth it!

▪ Sometimes people can share bases in communities, the SIESTA mailing list, or third parties.

• Warning 1: Optimal orbitals are environment dependent!!!

• Warning 2: Basis can be optimized to get better agreement with  experiments. 
That doesn’t necessarily mean the basis set is better!! 



S

Practical stuff
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Practical stuff
Basic way to input the basis set:

FDF Flags Default Slightly better

Basis size: PAO.BasisSize DZP

Range of first ζ: PAO.EnergyShift 0.01 Ry 3-5 mRy

Second ζ: PAO.BasisType Split

Range of second: PAO.SplitNorm 0.15

Confinement

potential:

PAO.SoftDefault True

PAO.SoftInnerRadius 0.9

Fictitious pressure BasisPressure 0.2 GPa
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Practical stuff
Advanced way to input the basis set:

%block PAO.BasisSize
Si   DZ
H    SZP
O    DZP

%endblock PAO.BasisSize



%block PAO.Basis
O 2
n=2   0   2  E  50. 2.5
0.0   0.0
1.0   1.0

n=2   1   2  P  1
0.0   0.0
1.0   1.0

%endblock PAO.Basis

S

Practical stuff
Advanced way to input the basis set:

%block PAO.BasisSize
Si   DZ
H    SZP
O    DZP

%endblock PAO.BasisSize

% Species | Number of orbitals
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Practical stuff
Advanced way to input the basis set:

%block PAO.BasisSize
Si   DZ
H    SZP
O    DZP

%endblock PAO.BasisSize

% Species | Number of orbitals

% principal quatum number | angular momentum | number of ζ

%block PAO.Basis
O 2
n=2   0   2  E  50. 2.5
0.0   0.0
1.0   1.0

n=2   1   2  P  1
0.0   0.0
1.0   1.0

%endblock PAO.Basis
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Practical stuff
Advanced way to input the basis set:

%block PAO.BasisSize
Si   DZ
H    SZP
O    DZP

%endblock PAO.BasisSize

% Species | Number of orbitals

% principal quatum number | angular momentum | number of ζ

% type of confinement| parameters for the confinement potential

%block PAO.Basis
O 2
n=2   0   2  E  50. 2.5
0.0   0.0
1.0   1.0

n=2   1   2  P  1
0.0   0.0
1.0   1.0

%endblock PAO.Basis
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Practical stuff
Advanced way to input the basis set:

%block PAO.BasisSize
Si   DZ
H    SZP
O    DZP

%endblock PAO.BasisSize

% Species | Number of orbitals

% principal quatum number | angular momentum | number of ζ

% type of confinement| parameters for the confinement potential

% cutoff radius first-ζ| matching radius second-ζ

%block PAO.Basis
O 2
n=2   0   2  E  50. 2.5
0.0   0.0
1.0   1.0

n=2   1   2  P  1
0.0   0.0
1.0   1.0

%endblock PAO.Basis
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Practical stuff
Advanced way to input the basis set:

%block PAO.BasisSize
Si   DZ
H    SZP
O    DZP

%endblock PAO.BasisSize

% Species | Number of orbitals

% principal quatum number | angular momentum | number of ζ

% type of confinement| parameters for the confinement potential

% cutoff radius first-ζ| matching radius second-ζ

% polarization orbitals | number of ζ for polarization

%block PAO.Basis
O 2
n=2   0   2  E  50. 2.5
0.0   0.0
1.0   1.0

n=2   1   2  P  1
0.0   0.0
1.0   1.0

%endblock PAO.Basis
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Practical stuff
Advanced way to input the basis set:

%block PAO.BasisSize
Si   DZ
H    SZP
O    DZP

%endblock PAO.BasisSize

%block PAO.Basis
O 2
n=2   0   2  E  50. 2.5
0.0   0.0
1.0   1.0

n=2   1   2  P  1
0.0   0.0
1.0   1.0

%endblock PAO.Basis

%block PAO.Basis
O 3
n=2   0   2
0.0   0.0
1.0   1.0

n=2   1   2
0.0   0.0
1.0   1.0

n=3   2   1
0.0
1.0

%endblock PAO.Basis

% polarization orbitals | number of ζ for polarization
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Hands-on session:

Basis sets optimization
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Problems…

The VOID
(vacuum)
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Problems… Localization is a double-edged sword

• Advantages:
• Very efficient in terms of number of orbitals per electrons.

• Very well suited to describe localization.

• Large reduction in CPU and memory costs.

• No need for periodicity.

• Vacuum is almost free.

• Chemical information (charge population, projected density of states, etc).
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Problems… Localization is a double-edged sword

• Advantages:
• Very efficient in terms of number of orbitals per electrons.

• Very well suited to describe localization.

• Large reduction in CPU and memory costs.

• No need for periodicity.

• Vacuum is almost free.

• Chemical information (charge population, projected density of states, etc).

• Disadvantages:
• Lack of systematics for convergence.

• Require human and computational effort to get a good basis set before use.

• Spatially biased, since they are optimal for an atomic problem: Basis Set Superposition Error.

• Orbitals move with atoms, which brings extra terms in forces (Pulay corrections).

• Calculation of Hamiltonian matrix elements can be quite complicated (and expensive).



Imagine that you have the following system… and you want to calculate it’s 
binding energy

S

Problems… BSSE



Imagine that you have the following system… and you want to calculate it’s 
binding energy

S

Problems… BSSE

𝐸𝑏𝑖𝑛𝑑𝑖𝑛𝑔 = 𝐸𝑡𝑜𝑡𝑎𝑙 − 𝐸𝑠𝑦𝑠𝑡𝑒𝑚
1
− 𝐸𝑠𝑦𝑠𝑡𝑒𝑚

2



Imagine that you have the following system… and you want to calculate it’s 
binding energy

S

Problems… BSSE

𝐸𝑏𝑖𝑛𝑑𝑖𝑛𝑔 = 𝐸𝑡𝑜𝑡𝑎𝑙 − 𝐸𝑠𝑦𝑠𝑡𝑒𝑚
1
− 𝐸𝑠𝑦𝑠𝑡𝑒𝑚

2

▪ More flexible basis set as 
compared to the individual 
systems.
(the basis functions coming from 
neighbouring atoms also help improve 
the description of the electronic density 
around one of the atoms)

▪ Typically it overestimates the 
interaction energy
[giving rise to inaccuracies in the binding 
energy (too large, too stabilizing), 
adsorption energies and vacancy 
formation energies]  
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Problems… BSSE… Solution
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Problems… BSSE… Solution

Created by Rihards Gromuls

from Noun Project

Ghost atoms!

▪ Place basis functions where there 
are no atoms (more flexibility)

▪ They do not add charge to the 
system

▪ In SIESTA they enter the FDF file in 
the ChemicalSpeciesLabel block 
as negative numbers

▪ If we have better basis sets the 
improvement by adding ghost 
atoms lowers.
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Problems… 2D materials

Top view Side view

Graphene:
Graphene 

on a substrate
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Problems… 2D materials…Solutions

Top view Side view

Graphene:
Graphene 

on a substrate
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Problems… 2D materials…Solutions 2

Top view Side view

Graphene:
Graphene 

on a substrate

Add diffuse orbitals
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Problems… 2D materials…Diffuse orbitals

▪ Very important for surfaces/2D materials

▪ longer cut-off radii and slower decay than the usual 
orbitals in bulk materials

▪ Typically: 𝑙 → 𝑙 + 1
Graphene: 2s 2p valence → 3s 3p diffuse orbitals

▪ Improve the surface energies and work functions

▪ Improves the energy of the surface states and their 
decay into vacuum

▪ They are a bit more expensive than ghost orbitals 

▪ They are more convenient for relaxations (or 
dynamical calculations) (moving the centers of the 
ghost orbitals could lead to instabilities in the 
calculation)

Phys. Rev. B (b) 79, 075441 (2009)
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Hands-on session:

Basis sets…Special cases
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