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3. Other post-processing and visualization utilities

The tools concerning the lattice dynamics have been devel-
oped having in mind the I' phonons calculated for a large enough
supercell, that is a typical case in a simulation of molecular crystals
or disordered substitutional alloys.

The phdos tool is designed for analyzing the zone-center vibra-
tion results. As the system is supposed to be large (e.g., a supercell
chosen for a periodic crystal), the (artificially broadened, for con-
venience) discrete spectrum may serve as a fair approximation to
the total density of modes, and if weighted with (squared) compo-
nents of eigenvectors at different atoms, it provides a decomposition
into contributions of different atoms in the total density of vibration
modes.

A more sophisticated option is the projection of different eigen-
vectors according to various criteria. The typical system under study
isa supercell in which, e.g., an alloying, or some kind of deformation,
breaks the underlying perfect periodicity. Still, some trends related
to the latter can be revealed by appropriate projections. The two
obvious cases are the projections onto (1) g-vectors of the under-
lying lattice and (2) irreducible representations of the space group of
the underlying lattice; the corresponding formulas and some results

can be found in Ref. 136. The first type of projection, if done for a
sequence of q values, helps to reveal “phonon dispersions,” obviously
blurred by the broken periodicity, also making distinction between
transversal and longitudinal modes (see Ref. 137 for an example of
use). To make the trends more pronounced, the supercell needs to
be sufficiently long in the direction concerned (see, e.g., ). The
simplest case, a projection onto a single q = 0 value, may also be of
interest, since it enhances the modes that are expected to dominate
the infrared or Raman spectra and thus facilitates their comparison
with the experiment.

The symmetry projection may help to isolate in a possibly
complex spectrum those modes which are expected to dominate
according to a given selection rule, again in view of their verifi-
cation against the experiments. The group-symmetry information
needed for the projections is available, e.g., from the Bilbao Crys-
tallographic Server, " and the technical details are explained in the
documentation included in the tools.

The vibent tool performs a straightforward calculation (see,
e.g., Sec. II.C in Ref. 139 or Sec. 5.3 in Ref. 140) of temperature-
dependent vibration contributions to the free energy and entropy
(see Fig as an example). The necessary input information is
the vibration spectrum, originating from the Vibra frozen phonon
calculation on a sufficiently large system.

The velcf tool calculates the velocity autocorrelation func-
tion and its Fourier transform from a (presumably sufficiently long)
molecular dynamics (MD) history, recorded in the .MD or .ANTI file.
This technique' ' can be used to obtain phonon frequencies and was
applied along with a Siesta calculation in Ref. 142. An example of
such simulation (1000 MD steps at 600 K) is shown in Fig. 18 in
comparison with frozen phonon results, revealing similarities of the
spectra obtained.
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phdos and vibent may only address results of lattice dynamics
calculations for Gamma. For these calculations to make sense, they
have to be done on large enough supercell. A typical case under study
IS that of a mixed system (alloy), represented by a special
guasirandom (or, otherwise mixed) supercell. velcf post-processes a
standard MD run.



phdos: q-resolved density of modes

In solid solutions, where topological disorder destroys an exact crystal
periodicity, the projection of phonon eigenvectors taken along with a
exp(iqR) plane wave may help to reveal somehow a smeared w(q)
dispersion trends in a form of “spectral function”:

In(w,q) = S:b: A (w)e' e 25(w — wj) .
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It amplifies the weights of vibrations in which similar atoms move in phase
with a given g-wave throughout the crystal, and suppresses the
movements whose phase are at random with such wave. In particular, the
q =0 projection amplifies the “prototype” zone-center TO mode of
zincblende crystal, the quasi rigid movement of the cation sublattice

against the anion one:
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1 aEeN

2
’ O(w — w;) .




Projecting into Longitudinal and Transversal components

g=(q,0 0)-projected Ph-DOS (arb. units)
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vibent : Vibration contributions to entropy

In a system of harmonic oscillators {wg }, the partition function:
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The free energy end entropy:

— 2k or, via
Fo= —kg'lnz = Z [— + kgl'In (1 € kBT)} » mode density g(w):

Wmax

X

F = kBT/ [ln(e — 1) — 5] g(w)dw with x = kBT;
0

S = —g—izks/ {ex”il—ln(1—e—w)] g(w)dw .

0
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In a large supercell, q = 0 discrete spectrum samples the continuous
density of modes:
g(w) =~ Z O(w — Wa) -



vibent : Vibration contributions to entropy

F = kBT/ [ln(e”j —1) — g] g(w)dw; integrand in the figure:
0
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r = 1 for some values of w and T.
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— the resulting F' either positive or negative; large negative contribution
results from low-frequency modes.
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Verlet algorithm:

Velocity autocorre-
lation function:

Vibrational density
of states:

: Molecular dynawics
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velcft :Molecular dynawmics
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