
SIESTA compilation options

Yann Pouillon, Simune Atomistics



To build or not to build?

● Choice 1: build SIESTA yourself

● Choice 2: have someone build SIESTA for you

This video: big-picture overview of choice 1 on Linux

Detailed instructions for all platforms:
https://docs.siesta-project.org/

https://docs.siesta-project.org/


Brief introduction

Yann Pouillon: ORCID: 0000-0001-9850-2129

● M. Eng. + PhD in condensed matter physics

● Contributions to various codes & frameworks, emphasis on build systems & packaging

● Co-founder of the Electronic Structure Library (ESL): https://esl.cecam.org/

● Currently: Innovation Architect at Simune Atomistics

Simune: https://www.simuneatomistics.com/

● Software & services around atomistic simulations

● Industrial & academic users

● Direct contributions to open-source software packages, e.g. SIESTA, ASE, ABINIT, ESL Bundle

● Providing pre-compiled SIESTA binaries, in particular for Windows

https://orcid.org/0000-0001-9850-2129
https://esl.cecam.org/
https://www.simuneatomistics.com/
https://siesta-project.org/
https://wiki.fysik.dtu.dk/ase/
https://www.abinit.org/
https://gitlab.com/ElectronicStructureLibrary/esl-bundle


Common traits of software builds

Building software ≠ transforming source code into binary code

5 steps to consider:

1. Preparing the environment

2. Configuring the build

3. Producing the executables

4. Installing the executables

5. Running the executables in the correct environment



Building SIESTA 4.x manually



1. Preparing the environment

● Not specific to the software
● Valid for (almost) all DFT codes
● Critical for successful builds
● List of requirements
● Revise/update once or twice a year

● For SIESTA 4.x
○ C compiler
○ Fortran compiler
○ GNU Make
○ MPI distribution
○ Linear algebra libraries
○ HDF5 + NetCDF

● Package managers / App stores
○ Linux (Debian-based or RedHat-based)
○ MacOS (Intel-based or ARM-based)
○ Windows

● Build frameworks
○ Console (terminal): manual builds
○ Scripts & recipes: streamlined builds
○ Docker: generic containers
○ Singularity: HPC containers
○ EasyBuild: reproducible builds, HPC
○ Spack: highly-tuned build toolchains
○ Virtual machines: testing & learning

Details: https://docs.siesta-project.org/

https://docs.siesta-project.org/


2. Configuring the build of SIESTA 4.x

1. Which kind of executable to build?
a. Serial or parallel?
b. Which of the available compilers?
c. Which of the MPI distributions?
d. Which set of linear algebra libraries?
e. With or without platform-independent I/O?

2. Translate choices into an arch.make file in the Obj/ subdirectory
(see https://docs.siesta-project.org/)

3. Type:
    sh ../Src/obj_setup.sh

Pro Tip
Type “make clean” before building SIESTA to check if the configuration is valid.

https://docs.siesta-project.org/


3.1. Building SIESTA 4.x

● For SIESTA 4.0 or to limit use of resources: make

● Multiple cores allow parallel builds (faster): make -j N, e.g. make -j 4

● Wait until the build finishes

● Type: ls -ltr
The last file should be the SIESTA executable

Pro Tip
If the build fails after typing “make -j N”, type “make” (without “-j N”) to find out 
more easily where the error occurred.



3.2. Building the SIESTA utilities

● After building SIESTA: got to the Util/ subdirectory to build utilities

● Example: building gnubands to plot band structures with Gnuplot

cd Util/Bands
make
ls -ltr

● The last file displayed by the ls command should be named gnubands and be executable

● Rinse & repeat for any other utility you want to build

http://www.gnuplot.info/


4. Installing SIESTA

● Good Practice: copy executables out of the source package

● Example with SIESTA 4.1 and gnubands (assuming the current directory is Obj/)

    mkdir -p $HOME/siesta/4.1/bin
    cp siesta $HOME/siesta/4.1/bin
    cp Util/Bands/gnubands $HOME/siesta/4.1/bin

● Create a configuration script: $EDITOR $HOME/siesta/4.1/bin/siesta-vars.sh

    #!/bin/sh
    PATH=”$HOME/siesta/4.1/bin:$PATH”
    export PATH



5. Running SIESTA with the correct environment

● Use siesta-vars.sh to select the desired SIESTA version

source $HOME/siesta/4.1/bin/siesta-vars.sh

● To be done only once per terminal session

● Advantage: keep the default environment clean

Detailed build instructions: https://docs.siesta-project.org/

https://docs.siesta-project.org/


Building SIESTA 5.x with the ESL Bundle



Getting started with the ESL Bundle

● ESL Bundle = curated collection of libraries used to build DFT codes

● Only provides components related to electronic structure

● Explicitly excluded: linear algebra & math libraries, HDF5, NetCDF

● Advantage: use the same up-to-date libraries to build several DFT codes

● 1 or 2 releases per year

● Download: https://gitlab.com/ElectronicStructureLibrary/esl-bundle

https://gitlab.com/ElectronicStructureLibrary/esl-bundle


Installing SIESTA 5.x dependencies

● Example: compiling on Ubuntu with GCC and OpenMPI

git clone \
    https://gitlab.com/ElectronicStructureLibrary/esl-bundle.git
cd esl-bundle
mkdir my_build_dir
cd my_build_dir
../install-bundle -s ubuntu -c gcc -f openmpi

● Wait until the build finishes (may take a while)

● Components will be installed in a subdirectory named install/

● ⚠ Recent LibXC versions may be very slow to compile



Accessing the installed components

● Before compiling SIESTA:

LD_LIBRARY_PATH=”/path/to/esl-bundle/my_build_dir/install/lib:$LD_LIBRARY_PATH”
export LD_LIBRARY_PATH
PATH=”/path/to/esl-bundle/my_build_dir/install/bin:$PATH”
export PATH

● Then: follow the same steps as for the manual SIESTA 4.x build



Building any SIESTA version with EasyBuild



Getting started with EasyBuild

● Choose a location where to install software packages, e.g. /opt/hpc/ (need 10-20 Gb free)

● Prerequisites: GCC, Lmod, Python 3.x (see https://docs.siesta-project.org/)

● Installing EasyBuild:

    pip install easybuild

● Configuring EasyBuild:

    mkdir -p $HOME/.config/easybuild
    $EDITOR $HOME/.config/easybuild/config.cfg

https://docs.siesta-project.org/


EasyBuild configuration (config.cfg)

[basic]
repositorypath = /opt/hpc/EB_Archives
robot-paths = %(repositorypath)s:%(DEFAULT_ROBOT_PATHS)s

[config]
modules-tool = Lmod
prefix = /opt/hpc

[override]
download-timeout = 1200

Pro Tip
Before starting, make sure you can write files to the /opt/hpc/ directory.



Selecting & installing a toolchain

● EasyBuild provides several toolchains (consistent compilers & libraries)

● Package availability: takes time ⇒ avoid selecting latest toolchains

● Example: gompi/2020a = GCC + OpenMPI, versions available at the beginning of 2020

● Making the toolchain ready: eb gompi-2020a.eb -r

● ⚠ This might take between 3 and 7 hours!

● Good news: you do it only once per toolchain



Installing common SIESTA dependencies

● Searching for an EasyBuild recipe:

    eb -S KEYWORD

● Linear algebra libraries: search for scalapack

    eb ScaLAPACK-2.1.0-gompi-2020a.eb -r

● NetCDF: search for netcdf-fortran

    eb netCDF-Fortran-4.5.2-gompi-2020a.eb -r

● LibXC: search for libxc

    eb libxc-4.3.4-GCC-9.3.0.eb -r



Installing SIESTA 5.x dependencies

● ESL EasyConfigs repository: https://gitlab.com/ElectronicStructureLibrary/esl-easyconfigs

● Build libraries one after the other

git clone 
https://gitlab.com/ElectronicStructureLibrary/esl-easyconfigs.git
cd esl-easyconfigs/easyconfigs
ls -R
cd x/xmlf90
eb xmlf90-1.5.4-gompi-2020a.eb
cd ../../l/libpsml
eb libpsml-1.1.7-gompi-2020a.eb
cd ../libgridxc
eb libgridxc-0.8.5.1-gompi-2020a.eb

https://gitlab.com/ElectronicStructureLibrary/esl-easyconfigs
https://gitlab.com/ElectronicStructureLibrary/esl-easyconfigs.git


Accessing the installed components

● EasyBuild builds “modules”

● Listing the available modules: module avail

● Loading a module and all its dependencies:

    module load MODULE

or

    module load MODULE/VERSION

● Then: follow the same steps as for SIESTA 4.x builds



Summary

● 5 steps to any build option:

1. Prepare the environment
2. Configure the build
3. Build the executables
4. Install the executables
5. Run in the correct environment

● Detailed instructions: https://docs.siesta-project.org/ (including an additional test step)

● Exercise: make scripts that perform the workflow of your choice

https://docs.siesta-project.org/

