SIESTA POSTPROCESSING

An overview.

What can I analyze?

- Bands
- Fatbands
- Density of States
- Projected density of states
- Local density of states/STM
- Wavefunctions
- Electronic density
- Potential profiles
- Partial charges
- COOP/COHP
- ..

Where are the tools?

Fortran utils

```
(base) pfebrer@pfebrer-P65-Creator-8SE:~/siesta$ cd Util/
(base) pfebrer@pfebrer-P65-Creator-8SE:~/siesta/UtilS ls
                                                    Projections
                                                                      Sockets
build all.sh Denchar
                            Helpers
                                                    PyAtom
                                                                      SpPivot
clean all.sh DensityMatrix HSX
                                                    README
                                         Optical
CMLComp
             dep all.sh
                            JobList
Contour
             Eig2DOS
                            Macroave
                                         pdosxml
                                                    Scripting
                                                                      VCA
Contrib
             Gen-basis
                                                                      Vibra
                            MM Examples Plrho
                                                    SiestaSubroutine WFS
```

execute to install (after SIESTA compilation)

Sisl (python package)

:~\$ pip install sisl

or if you are using conda

:~\$ conda install sisl

In general, there's more than one way to get the same analysis

How do I use them?

Fortran utils

There's either a *README* or a .tex file in each util's directory.

```
(base) pfebrer@pfebrer-P65-Creator-8SE:~/siesta/Util/Denchar/Docs$ ls
CHANGES denchar.tex README
```

From the .tex file you can get a pdf of the documentation:

```
:~/siesta/Util/Denchar/Docs$ pdflatex denchar.tex

(base) pfebrer@pfebrer-P65-Creator-8SE:~/siesta/Util/Denchar/Docs$ ls
CHANGES denchar.log denchar.tex README
denchar.aux denchar.pdf denchar.toc
```

Very well explained tutorials:

https://personales.unican.es/junqueraj/JavierJunquera_files/Metodos/Full-STO/Full-STO.html

Sisl

https://zerothi.github.io/sisl/docs/latest/index.html

Some tutorials:

https://github.com/zerothi/ts-tbt-sisl-tutorial

Number 1 advice: PLAN in advance

Output files can get VERY big

SIESTA ouputs information on demand

Always better to know what you need.

READ SIESTA'S USER GUIDE AND EACH TOOL'S DOCUMENTATION!

Hamiltonian:

TS.HS.Save t

Potentials/density:

SaveTotalPotential t

SaveRho t

Bands:

%block BandLines

1 1.000 1.000 1.000 L

20 0.000 0.000 \Gamma

%endblock BandLines

PDOS:

%block ProjectedDensityOfStates

-20.00 10.00 0.200 500 eV

%endblock ProjectedDensityOfStates

Charges:

WriteHirshfeldPop t

SIESTA outputs

Unformatted files

You need scripts to read them.

- Hamiltonian and overlap (.HSX or .TSHS)
- Density matrix (.DM or .TSDE)
- Real space grids (.RHO, .VT, .LDOS...)
- Wavefunction files (.WFSX)
- ..

Formatted files

They are human-readable.

(often better to use scripts anyway)

- Main output
- Structures (.xyz, .XV, .STRUCT_OUT...)
- Forces (.FA)
- Density of states (.DOS, .PDOS...)
- Bands (.bands)
- ...

Real space grids: Understanding them

They are **evenly spaced 3d meshes** of a certain quantity inside the unit cell.

Input flag	Without netcdf support	With netcdf support
SaveRho	SystemLabel.RHO	Rho.grid.nc
SaveTotalPotential	SystemLabel.VT	TotalPotential.grid.nc

Softwares such as VESTA or XCrysDen can help you visualize these grids, but first they need to be **converted to a format they understand**.

Real space grids: Visualizing them.

Util/Grid: *grid2cube* (docs in grid2cube.f)

Sisl: :~\$ sgrid SystemLabel.RHO SystemLabel.cube

VESTA or XCrysDen

Visualize directly with sisl:

(you can also process the grid)

An example: Charge density

